Home Nanotechnology Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics

Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics

0
Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics

[ad_1]

  • Halasyamani, P. S. & Poeppelmeier, Okay. R. Noncentrosymmetric oxides. Chem. Mater. 10, 2753–2769 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Okay, Okay. M., Chi, E. O. & Halasyamani, P. S. Bulk characterization strategies for non-centrosymmetric supplies: second-harmonic technology, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 35, 710–717 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, S. et al. ZnTeMoO6: a robust second-harmonic technology materials originating from three sorts of uneven constructing items. RSC Adv. 3, 14000–14006 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ra, H.-S., Okay, Okay. M. & Halasyamani, P. S. Combining second-order Jahn–Teller distorted cations to create extremely environment friendly SHG supplies: synthesis, characterization, and NLO properties of BaTeM2O9 (M = Mo6+ or W6+). J. Am. Chem. Soc. 125, 7764–7765 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Prime-seeded answer progress, morphology, and properties of a polar crystal Cs2TeMo3O12. Cryst. Progress Des. 11, 1863–1868 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Z., Tao, X., Yin, X., Zhang, W. & Jiang, M. Elastic, dielectric, and piezoelectric properties of BaTeMo2O9 single crystal. Appl. Phys. Lett. 93, 252906 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Q. et al. Biaxial crystal β-BaTeMo2O9: theoretical evaluation and the feasibility as high-efficiency acousto-optic Q-switch. Choose. Specific 25, 24893–24900 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Forzatti, P., Trifiro, F. & Villa, P. CdTeMoO6, CoTeMoO6, MnTeMoO6, and ZnTeMoO6: a brand new class of selective catalysts for allylic oxidation of butene and propylene. J. Catal. 55, 52–57 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X., Gao, Z. & Tao, X. Current advances in tellurite molybdates/tungstates crystals. CrystEngComm 24, 7516–7529 (2022).

  • Xie, C., Yuan, H., Liu, Y. & Wang, X. Two-nodal floor phonons in solid-state supplies. Phys. Rev. B 105, 054307 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, C. et al. Managed progress of layered acentric CdTeMoO6 single crystals with linear and nonlinear optical properties. Cryst. Progress Des. 18, 3376–3384 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Geim, A. Okay. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basov, D., Fogler, M. & García de Abajo, F. Polaritons in van der Waals supplies. Science 354, aag1992 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Low, T. et al. Polaritons in layered two-dimensional supplies. Nat. Mater. 16, 182–194 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a pure van der Waals crystal. Nature 562, 557–562 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abedini Dereshgi, S. et al. Lithography-free IR polarization converters through orthogonal in-plane phonons in α-MoO3 flakes. Nat. Commun. 11, 5771 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Chen, X. & Xu, Y. Topological phononics: from elementary fashions to actual supplies. Adv. Funct. Mater. 30, 1904784 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Ultrafast anisotropic dynamics of hyperbolic nanolight pulse propagation. Sci. Adv. 9, eadi4407 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, S. et al. Tunable phonon polaritons in atomically skinny van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. Infrared hyperbolic metasurface primarily based on nanostructured van der Waals supplies. Science 359, 892–896 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feres, F. H. et al. Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide. Nat. Commun. 12, 1995 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, G. et al. Lengthy-lived phonon polaritons in hyperbolic supplies. Nano Lett. 21, 5767–5773 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, W. et al. Ghost hyperbolic floor polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, C. et al. Supply-configured symmetry-broken hyperbolic polaritons. eLight 3, 14 (2023).

    Article 

    Google Scholar
     

  • Hu, G. et al. Actual-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhary, Okay. et al. Engineering phonon polaritons in van der Waals heterostructures to reinforce in-plane optical anisotropy. Sci. Adv. 5, eaau7171 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. Actual-space statement of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, T., Ma, W., Wang, T. & Li, P. Phonon polaritons in van der Waals polar heterostructures for broadband robust mild–matter interactions. Nanoscale 15, 12000–12007 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. Optical nanoimaging of hyperbolic floor polaritons on the edges of van der Waals supplies. Nano Lett. 17, 228–235 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, S. et al. Manipulation and steering of hyperbolic floor polaritons in hexagonal boron nitride. Adv. Mater. 30, 1706358 (2018).

    Article 

    Google Scholar
     

  • Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons within the pure hyperbolic materials hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Álvarez-Pérez, G., Voronin, Okay. V., Volkov, V. S., Alonso-González, P. & Nikitin, A. Y. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Phys. Rev. B 100, 235408 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Yang, X., Yao, J., Rho, J., Yin, X. & Zhang, X. Experimental realization of three-dimensional indefinite cavities on the nanoscale with anomalous scaling legal guidelines. Nat. Photon. 6, 450–454 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yoxall, E. et al. Direct statement of ultraslow hyperbolic polariton propagation with adverse section velocity. Nat. Photon. 9, 674–678 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jin, C. & Li, Z. Synthesis, crystal construction, optical property and theoretical research of a noncentrosymmetric telluromolybdate CoTeMoO6. J. Alloy. Compd. 722, 381–386 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mączka, M. et al. Progress and characterization of nonlinear optical telluromolybdate CoTeMoO6 single crystals. J. Strong State Chem. 220, 142–148 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gupta, M., Rambadey, O. V. & Sagdeo, P. R. Probing the impact of R-cation radii on structural, vibrational, optical, and dielectric properties of uncommon earth (R = La, Pr, Nd) aluminates. Ceram. Int. 48, 23072–23080 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Z. et al. Probing subwavelength in-plane anisotropy with antenna-assisted infrared nano-spectroscopy. Nat. Commun. 12, 2649 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Close to-field imaging of mid-infrared floor phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, Y. et al. Ultralow-loss phonon polaritons within the isotope-enriched α-MoO3. Nano Lett. 22, 10208–10215 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, J. et al. Twisted nano-optics: manipulating mild on the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, J. et al. A number of and spectrally strong photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. 22, 867–872 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, S. et al. A mixture of a number of chromophores enhances second-harmonic technology in a nonpolar noncentrosymmetric oxide: CdTeMoO6. J. Mater. Chem. C 1, 2906–2912 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Passler, N. C. & Paarmann, A. Generalized 4 × 4 matrix formalism for mild propagation in anisotropic stratified media: research of floor phonon polaritons in polar dielectric heterostructures. J. Choose. Soc. Am. B 34, 2128–2139 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der Waals semiconductor α-MoO3 from near-and far-field correlative research. Adv. Mater. 32, 1908176 (2020).

    Article 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here