Friday, March 1, 2024

Excessive-precision detection and navigation surgical procedure of colorectal most cancers micrometastases | Journal of Nanobiotechnology


  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. International Most cancers statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 international locations. Ca-Most cancers J Clin. 2021;71:209–49.

    Article 
    PubMed 

    Google Scholar
     

  • Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal most cancers. Lancet. 2019;394:1467–80.

    Article 
    PubMed 

    Google Scholar
     

  • Orosco RK, Tapia VJ, Califano JA, Clary B, Cohen EEW, Kane C, Lippman SM, Messer Okay, Molinolo A, Murphy JD, et al. Constructive surgical margins within the 10 commonest stable cancers. Sci Rep. 2018;8:5686.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amri R, Bordeianou LG, Sylla P, Berger DL. Affiliation of radial margin positivity with colon most cancers. JAMA Surg. 2015;150:890–8.

    Article 
    PubMed 

    Google Scholar
     

  • Peeters KC, Marijnen CA, Nagtegaal ID, Kranenbarg EK, Putter H, Wiggers T, Rutten H, Pahlman L, Glimelius B, Leer JW, van de Velde CJ. The TME trial after a median follow-up of 6 years: elevated native management however no survival profit in irradiated sufferers with resectable rectal carcinoma. Ann Surg. 2007;246:693–701.

    Article 
    PubMed 

    Google Scholar
     

  • Morris VK, Kennedy EB, Baxter NN, Benson AB 3, Cercek A, Cho M, Ciombor KK, Cremolini C, Davis A, Deming DA, et al. Therapy of metastatic colorectal most cancers: ASCO guideline. J Clin Oncol. 2023;41:678–700.

    Article 
    PubMed 

    Google Scholar
     

  • Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Pocard M, Facy O, Arvieux C, Lorimier G, Pezet D, et al. Cytoreductive Surgical procedure plus hyperthermic intraperitoneal chemotherapy versus cytoreductive Surgical procedure alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, part 3 trial. Lancet Oncol. 2021;22:256–66.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu S, Hu Z, Tian R, Yung BC, Yang Q, Zhao S, Kiesewetter DO, Niu G, Solar H, Antaris AL, Chen X. Repurposing cyanine NIR-I dyes accelerates medical translation of Close to-Infrared-II (NIR-II) bioimaging. Adv Mater. 2018;30:e1802546.

    Article 

    Google Scholar
     

  • Zhu S, Yung BC, Chandra S, Niu G, Antaris AL, Chen X, Close to-Infrared. -II (NIR-II) Bioimaging through off-peak NIR-I fluorescence Emission. Theranostics. 2018;8:4141–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antaris AL, Chen H, Cheng Okay, Solar Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15:235–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han T, Wang Y, Ma S, Li M, Zhu N, Tao S, Xu J, Solar B, Jia Y, Zhang Y, et al. Close to-infrared carbonized polymer dots for NIR-II bioimaging. Adv Sci. 2022;9:e2203474.

    Article 

    Google Scholar
     

  • Tian R, Ma H, Zhu S, Lau J, Ma R, Liu Y, Lin L, Chandra S, Wang S, Zhu X, et al. Multiplexed NIR-II probes for lymph node-invaded most cancers detection and imaging-guided surgical procedure. Adv Mater. 2020;32:e1907365.

    Article 
    PubMed 

    Google Scholar
     

  • Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H. Multifunctional in vivo vascular imaging utilizing near-infrared II fluorescence. Nat Med. 2012;18:1841–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang R, Zhou L, Wang W, Li X, Zhang F. In vivo gastrointestinal drug-release monitoring by way of second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun. 2017;8:14702.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV. Picture-guided most cancers surgical procedure utilizing near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan J, Wang S, Yan B, Tang Y, Zheng J, Ji H, Hu Y, Zhuang B, Deng H, Yan J. Indocyanine inexperienced for radical lymph node dissection in sufferers with sigmoid and rectal most cancers: randomized medical trial. BJS Open. 2022;6:zrac151.

    Article 
    PubMed Central 

    Google Scholar
     

  • Chen QY, Xie JW, Zhong Q, Wang JB, Lin JX, Lu J, Cao LL, Lin M, Tu RH, Huang ZN, et al. Security and Efficacy of indocyanine inexperienced tracer-guided lymph node dissection throughout laparoscopic radical gastrectomy in sufferers with gastric most cancers: a randomized medical trial. JAMA Surg. 2020;155:300–11.

    Article 
    PubMed 

    Google Scholar
     

  • He Okay, Hong X, Chi C, Cai C, An Y, Li P, Liu X, Shan H, Tian J, Li J. Efficacy of near-Infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized managed trial. J Am Coll Surg. 2022;234:130–7.

    Article 
    PubMed 

    Google Scholar
     

  • van der Vorst JR, Schaafsma BE, Hutteman M, Verbeek FP, Liefers GJ, Hartgrink HH, Smit VT, Löwik CW, van de Velde CJ, Frangioni JV, Vahrmeijer AL. Close to-infrared fluorescence-guided resection of colorectal liver metastases. Most cancers. 2013;119:3411–8.

    Article 
    PubMed 

    Google Scholar
     

  • Handgraaf HJM, Boogerd LSF, Höppener DJ, Peloso A, Sibinga Mulder BG, Hoogstins CES, Hartgrink HH, van de Velde CJH, Mieog JSD, Swijnenburg RJ, et al. Lengthy-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: a retrospective multicenter evaluation. Eur J Surg Oncol. 2017;43:1463–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han SR, Lee CS, Bae JH, Lee HJ, Yoon MR, Al-Sawat A, Lee DS, Lee IK, Lee YS. Quantitative analysis of colon perfusion after excessive versus low ligation in rectal Surgical procedure by indocyanine inexperienced: a pilot research. Surg Endosc. 2022;36:3511–9.

    Article 
    PubMed 

    Google Scholar
     

  • Munechika T, Kajitani R, Matsumoto Y, Nagano H, Komono A, Aisu N, Morimoto M, Yoshimatsu G, Yoshida Y, Hasegawa S. Security and effectiveness of excessive ligation of the inferior mesenteric artery for most cancers of the descending colon below indocyanine inexperienced fluorescence imaging: a pilot research. Surg Endosc. 2021;35:1696–702.

    Article 
    PubMed 

    Google Scholar
     

  • De Nardi P, Elmore U, Maggi G, Maggiore R, Boni L, Cassinotti E, Fumagalli U, Gardani M, De Pascale S, Parise P, et al. Intraoperative angiography with indocyanine inexperienced to evaluate anastomosis perfusion in sufferers present process laparoscopic colorectal resection: outcomes of a multicenter randomized managed trial. Surg Endosc. 2020;34:53–60.

    Article 
    PubMed 

    Google Scholar
     

  • Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG, Bruns OT. Shortwave infrared fluorescence imaging with the clinically authorized near-infrared dye indocyanine inexperienced. Proc Natl Acad Sci U S A. 2018;115:4465–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, Su S, Solar X, Shi X, Li C, et al. First-in-human liver-tumour Surgical procedure guided by multispectral fluorescence imaging within the seen and near-infrared-I/II home windows. Nat Biomed Eng. 2020;4:259–71.

    Article 
    PubMed 

    Google Scholar
     

  • Cao C, Jin Z, Shi X, Zhang Z, Xiao A, Yang J, Ji N, Tian J, Hu Z. First Medical investigation of near-infrared window IIa/IIb fluorescence imaging for exact surgical resection of gliomas. IEEE Trans Biomed Eng. 2022;69:2404–13.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, Fan S, Zhang L, Zhou Y, Cheng T, Shi C. A near-infrared fluorescent heptamethine indocyanine dye with preferential Tumor accumulation for in vivo imaging. Biomaterials. 2010;31:6612–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Han T, Wang Y, Zhang F, Li M, Bai L, Wang X, Solar B, Wang X, Du J, et al. Ultrabright renal-clearable cyanine-protein nanoprobes for high-quality NIR-II angiography and lymphography. Nano Lett. 2022;22:7965–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, Wang C, Cheng L, He W, Cheng Z, Liu Z. Protein modified upconversion nanoparticles for imaging-guided mixed photothermal and photodynamic remedy. Biomaterials. 2014;35:2915–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peralta DV, Heidari Z, Sprint S, Tarr MA. Hybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal remedy on 4T1 Breast most cancers cells. ACS Appl Mater Interfaces. 2015;7:7101–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia B, Zhang W, Shi J, Xiao SJ. Engineered stealth porous silicon nanoparticles through floor encapsulation of bovine serum albumin for prolonging blood circulation in vivo. ACS Appl Mater Interfaces. 2013;5:11718–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Q, Ma Z, Wang H, Zhou B, Zhu S, Zhong Y, Wang J, Wan H, Antaris A, Ma R, et al. Rational design of molecular fluorophores for organic imaging within the NIR-II window. Adv Mater. 2017;29:1605497.

    Article 

    Google Scholar
     

  • Alifu N, Zebibula A, Qi J, Zhang H, Solar C, Yu X, Xue D, Lam JWY, Li G, Qian J, Tang BZ. Single-molecular near-Infrared-II theranostic techniques: ultrastable aggregation-induced emission nanoparticles for long-term tracing and environment friendly photothermal remedy. ACS Nano. 2018;12:11282–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Welsher Okay, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H. A path to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4:773–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Wang M, Huang B, Zhu SW, Zhou JJ, Chen DR, Cui R, Zhang M, Solar ZJ. Theranostic near-infrared-IIb emitting nanoprobes for selling immunogenic radiotherapy and abscopal results towards most cancers Metastasis. Nat Commun. 2021;12:7149.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Yue J, Cui R, Ma Z, Wan H, Wang F, Zhu S, Zhou Y, Kuang Y, Zhong Y, et al. Brilliant quantum dots emitting at 1,600 nm within the NIR-IIb window for deep tissue fluorescence imaging. Proc Natl Acad Sci U S A. 2018;115:6590–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu M, Yang X, Zhang Y, Yang H, Huang H, Wang Z, Dong J, Zhang R, Solar Z, Li C, Wang Q. Pb-Doped ag(2) Se Quantum dots with enhanced photoluminescence within the NIR-II window. Small. 2021;17:e2006111.

    Article 
    PubMed 

    Google Scholar
     

  • Wang FF, Qu LQ, Ren FQ, Baghdasaryan A, Jiang YY, Hsu R, Liang P, Li JC, Zhu GZ, Ma ZR, Dai HJ. Excessive-precision tumor resection right down to few-cell degree guided by NIR-IIb molecular fluorescence imaging. Proc Natl Acad Sci U S A. 2022;119:2123.


    Google Scholar
     

  • Li M, Zheng X, Han T, Ma S, Wang Y, Solar B, Xu J, Wang X, Zhang S, Zhu S, Chen X. Close to-infrared-II ratiometric fluorescence probes for non-invasive detection and exact navigation Surgical procedure of metastatic sentinel lymph nodes. Theranostics. 2022;12:7191–202.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otsuka H, Nagasaki Y, Kataoka Okay. PEGylated nanoparticles for organic and pharmaceutical purposes. Adv Drug Supply Rev. 2003;55:403–19.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Tao H, Yang Okay, Zhang S, Lee ST, Liu Z. Optimization of floor chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials. 2011;32:144–51.

    Article 
    PubMed 

    Google Scholar
     

  • van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee AG, et al. Intraoperative tumor-specific fluorescence imaging in Ovarian most cancers by folate receptor-α focusing on: first in-human outcomes. Nat Med. 2011;17:1315–9.

    Article 
    PubMed 

    Google Scholar
     

  • Suo Y, Wu F, Xu P, Shi H, Wang T, Liu H, Cheng Z. NIR-II fluorescence endoscopy for focused imaging of colorectal most cancers. Adv Healthc Mater. 2019;8:e1900974.

    Article 
    PubMed 

    Google Scholar
     

  • Park S, Lim S-Y, Bae SM, Kim S-Y, Myung S-J, Kim H-J. Indocyanine-based activatable fluorescence Flip-On probe for γ-Glutamyltranspeptidase and its utility to the mouse mannequin of Colon Most cancers. ACS Sens. 2016;1:579–83.

    Article 
    CAS 

    Google Scholar
     

  • Zhan Y, Ling S, Huang H, Zhang Y, Chen G, Huang S, Li C, Guo W, Wang Q. Fast unperturbed-tissue evaluation for intraoperative most cancers analysis utilizing an enzyme-activated NIR-II nanoprobe. Angew Chem Int Ed. 2021;60:2637–42.

    Article 
    CAS 

    Google Scholar
     

  • Jeong S, Track J, Lee W, Ryu YM, Jung Y, Kim SY, Kim Okay, Hong SC, Myung SJ, Kim S. Most cancers-microenvironment-sensitive activatable quantum dot probe within the second near-infrared window. Nano Lett. 2017;17:1378–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blau R, Epshtein Y, Pisarevsky E, Tiram G, Israeli Dangoor S, Yeini E, Krivitsky A, Eldar-Boock A, Ben-Shushan D, Gibori H, et al. Picture-guided Surgical procedure utilizing near-infrared Flip-ON fluorescent nanoprobes for exact detection of Tumor margins. Theranostics. 2018;8:3437–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Yao Q, Solar W, Shao Okay, Lu Y, Chung J, Kim D, Fan J, Lengthy S, Du J, et al. Aminopeptidase N activatable fluorescent probe for monitoring metastatic Most cancers and image-guided Surgical procedure through in situ spraying. J Am Chem Soc. 2020;142:6381–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Okay, Lyu Y, Huang Y, Xu S, Liu HW, Chen L, Ren TB, Xiong M, Huan S, Yuan L, et al. A de novo technique to develop NIR precipitating fluorochrome for long-term in situ cell membrane bioimaging. Proc Natl Acad Sci U S A. 2021;118: e2018033118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urano Y, Sakabe M, Kosaka N, Ogawa M, Mitsunaga M, Asanuma D, Kamiya M, Younger MR, Nagano T, Choyke PL, Kobayashi H. Fast most cancers detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci Transl Med. 2011;3:110ra119.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao T, Huang G, Li Y, Yang S, Ramezani S, Lin Z, Wang Y, Ma X, Zeng Z, Luo M, et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgical procedure. Nat Biomed Eng. 2016;1: 0006.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redy-Keisar O, Kisin-Finfer E, Ferber S, Satchi-Fainaro R, Shabat D. Synthesis and use of QCy7-derived modular probes for the detection and imaging of biologically related analytes. Nat Protoc. 2014;9:27–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan Y, Lei S, Zhang J, Qu J, Huang P, Lin J. Activatable NIR-II fluorescence probe for extremely delicate and selective visualization of glutathione in vivo. Anal Chem. 2021;93:17103–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar X, Liang X, Wang Y, Ma P, Xiong W, Qian S, Cui Y, Zhang H, Chen X, Tian F, et al. A Tumor microenvironment-activatable nanoplatform with phycocyanin-assisted in-situ nanoagent technology for synergistic therapy of colorectal most cancers. Biomaterials. 2023;301:122263.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang J, Pu Okay. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew Chem Int Ed. 2020;59:11717–31.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Zhang G, Zeng Z, Pu Okay. Activatable molecular probes for fluorescence-guided Surgical procedure, endoscopy and tissue biopsy. Chem Soc Rev. 2022;51:566–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar Y, Qu C, Chen H, He M, Tang C, Shou Okay, Hong S, Yang M, Jiang Y, Ding B, et al. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of most cancers. Chem Sci. 2016;7:6203–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu QJ, Zhang ZY, Guo XY, Yang JY, Cao CG, Li CJ, Zhang H, Xu PF, Hu ZH, Tian J. Novel multifunctional NIR-II aggregation-induced emission nanoparticles-assisted intraoperative identification and elimination of residual tumor. J Nanobiotechnol. 2022;20:143.

    Article 
    CAS 

    Google Scholar
     

  • Xu P, Kang F, Yang W, Zhang M, Dang R, Jiang P, Wang J. Molecular engineering of a excessive quantum yield NIR-II molecular fluorophore with aggregation-induced emission (AIE) traits for in vivo imaging. Nanoscale. 2020;12:5084–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang XD, Wang H, Antaris AL, Li L, Diao S, Ma R, Nguyen A, Hong G, Ma Z, Wang J, et al. Traumatic mind harm imaging within the second near-infrared window with a molecular fluorophore. Adv Mater. 2016;28:6872–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia R, Xu H, Wang C, Su L, Jing J, Xu S, Zhou Y, Solar W, Track J, Chen X, Chen H. NIR-II emissive AIEgen photosensitizers allow ultrasensitive imaging-guided surgical procedure and phototherapy to totally inhibit orthotopic hepatic tumors. J Nanobiotechnol. 2021;19:1.

    Article 

    Google Scholar
     

  • Shou Okay, Qu C, Solar Y, Chen H, Chen S, Zhang L, Xu H, Hong X, Yu A, Cheng Z. Multifunctional biomedical imaging in physiological and pathological situations utilizing a NIR-II probe. Adv Funct Mater. 2017;27:1700995.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles